China Best Sales 20PE-Cm017-026 Alumiunium Timing Pulleys alternator pulley

Product Description

CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars/ Timing Bars. Standard and non-standard pulleys according to drawings are available.

 
Types of material:
  1.  AlCuMgPb 6061 6082 Aluminum Timing Pulley
  2.  C45E 1045 S45C Carbon Steel Timing Pulley
  3.  GG25 HT250 Cast Iron Timing Pulley
  4.  SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
  5.  Other material on demand,  such as cooper, bronze and plastic
 
Types of surface treatment
 1.   Anodized surface -Aluminum Pulleys
 2.   Hard anodized surface — Aluminum Pulleys
 3.   Black Oxidized surface — Steel Pulleys
 4.  Zinc plated surface — Steel Pulleys
 5.  Chromate surface — Steel Pulleys; Cast Iron Pulleys
 6.  Nickel plated surface –Steel Pulleys; Cast Iron Pulleys
 
Types of teeth profile

Teeth Profile Pitch
HTD 3M,5M,8M,14M,20M
AT AT5,AT10,AT20
T T2.5,T5,T10
MXL 0.08″(2.032MM)
XL 1/5″(5.08MM)
L 3/8″(9.525MM)
H 1/2″(12.7MM)
XH 7/8″(22.225MM)
XXH 1 1/4″(31.75MM)
STS STPD S2M,S3M,S4.5M,S5M,S8M,S14M
RPP RPP5M,RPP8M,RPP14M,RPP20M
PGGT PGGT  2GT, 3GT and 5GT
PCGT GT8M,GT14M

 
Types of pitches and sizes

Imperial Inch Timing Belt Pulley,
1.     Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2.  Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3.  Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4.  Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5.  Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6.  Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7.  Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8.  Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9.  Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10.  Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11.  Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12.  Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13.  Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;

Metric Timing Belt Pulley T and AT
1.  Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60; 
2.   Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60; 
3.   Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60; 
4.   Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60; 
5.   Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60; 
6.   Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60; 
7.   Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60; 
8.   Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9.  Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60; 
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60; 
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60; 
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60; 
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
  
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M 
1.  HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.  HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.  HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.  HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
         14M-115; 14M-170

Metric Timing Belt Pulleys for Poly Chain GT2 Belts 
1.      PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62; 
2.      PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;

Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT 
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm 
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm 
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm

OMEGA RPP HTD Timing Pulleys 
1.   RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.   RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.   RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.   RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
     14M-115; 14M-170 /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Pulley Sizes: Timing
Manufacturing Process: Sawing
Material: Aluminum 6082
Surface Treatment: Phosphating
Application: Chemical Industry, Grain Transport, Mining Transport, Power Plant
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

timing pulley

What types of materials are typically used to manufacture timing pulleys?

Timing pulleys are manufactured using a variety of materials, each chosen based on its specific properties and performance requirements. Here are some of the materials typically used:

1. Steel:

Steel is a commonly used material for timing pulleys due to its high strength, durability, and resistance to wear. Steel pulleys can withstand heavy loads and high-speed applications. They are often used in industrial machinery, automotive engines, and power transmission systems that require robust and reliable performance.

2. Aluminum:

Aluminum timing pulleys are favored for their lightweight nature, corrosion resistance, and excellent heat dissipation properties. They are commonly used in applications where weight reduction is a priority, such as aerospace and automotive industries. Aluminum pulleys are also suitable for high-speed applications where reduced inertia is desired.

3. Cast Iron:

Cast iron timing pulleys offer excellent strength and durability. They are known for their high load-carrying capacity and resistance to wear and deformation. Cast iron pulleys are commonly used in heavy-duty industrial applications that involve high loads and harsh operating conditions.

4. Engineering Plastics:

Various engineering plastics, such as polyamide (nylon), polyoxymethylene (acetal), and polycarbonate, are used to manufacture timing pulleys. These materials offer good strength, wear resistance, and low friction properties. Engineering plastic pulleys are often chosen for their lightweight, low noise, and self-lubricating characteristics. They find applications in industries such as packaging, food processing, and automation.

5. Composite Materials:

Composite materials, which combine different materials such as carbon fibers or glass fibers with a polymer matrix, are used to manufacture high-performance timing pulleys. These pulleys offer exceptional strength-to-weight ratios, high stiffness, and excellent resistance to temperature and chemicals. Composite pulleys are typically used in demanding applications that require lightweight construction and high performance, such as motorsports and advanced machinery.

6. Other Materials:

Depending on the specific application requirements, timing pulleys can also be manufactured using materials such as brass, bronze, or stainless steel, which offer specific properties like corrosion resistance or electrical conductivity.

The choice of material for timing pulleys depends on factors such as load capacity, speed, operating conditions, environmental factors, and cost considerations. Manufacturers select the most suitable material to ensure optimal performance, durability, and reliability in the intended application.

timing pulley

How do timing pulleys contribute to precision and accuracy in machinery?

Timing pulleys play a significant role in enhancing precision and accuracy in machinery. Here’s an explanation of how timing pulleys contribute to precision and accuracy:

1. Synchronization of Components:

Timing pulleys ensure precise synchronization of different components in a machinery system. By using toothed timing belts or chains that mesh with the teeth on the pulleys, rotational motion can be accurately transferred from one pulley to another. This synchronization is vital for applications where precise coordination is essential, such as in robotics, printing presses, and conveyor systems.

2. Accurate Timing:

Timing pulleys, in combination with timing belts or chains, enable precise timing of operations in machinery. The teeth on the belt or chain engage with the teeth on the pulley, allowing for accurate positioning and control of the driven components. This accuracy in timing ensures that specific actions or tasks occur at the desired intervals, resulting in precise operation and improved overall performance.

3. Consistent Speed and Motion:

Timing pulleys contribute to maintaining consistent speed and motion in machinery. The teeth on the timing belt or chain engage with the teeth on the pulley, preventing slippage and maintaining a constant speed ratio between the driving and driven pulleys. This consistency in speed and motion is crucial for applications that require uniform movement, such as in CNC machines or automated assembly lines.

4. Reduced Backlash:

Timing pulleys help minimize backlash, which refers to the slight movement or play that can occur when there is a change in the direction of motion. The positive engagement between the teeth on the timing belt or chain and the pulley teeth reduces backlash, ensuring that there is minimal or no lost motion. This reduction in backlash contributes to improved precision and accuracy in the machinery.

5. Repeatable Performance:

Timing pulleys enable repeatable performance in machinery. The precise engagement between the teeth on the belt or chain and the pulley ensures that the same motion or action is replicated consistently. This repeatability is essential in applications that require consistent and accurate results, such as in automated manufacturing processes or precision measuring equipment.

6. Tolerance for High Loads:

Timing pulleys are designed to handle high loads while maintaining precision and accuracy. The toothed design and robust construction of timing pulleys allow them to transmit power effectively, even under heavy loads. This capability to withstand high loads without compromising precision ensures reliable performance in demanding applications.

7. Compatibility with Automation and Control Systems:

The precise and accurate nature of timing pulleys makes them compatible with automation and control systems. They can be easily integrated into computerized control systems, allowing for precise positioning and control of machinery components. This integration enhances the overall precision and accuracy of the system.

In summary, timing pulleys contribute to precision and accuracy in machinery by enabling synchronization of components, accurate timing, consistent speed and motion, reduced backlash, repeatable performance, tolerance for high loads, and compatibility with automation and control systems. These characteristics make timing pulleys a fundamental component in achieving precise and accurate operation in various mechanical systems.

timing pulley

How does a timing pulley differ from a standard pulley?

A timing pulley differs from a standard pulley in design and functionality. While both types of pulleys are used in mechanical systems, they serve different purposes and have distinct features. Here’s an explanation of the key differences between a timing pulley and a standard pulley:

1. Toothed Profile:

The most significant difference between a timing pulley and a standard pulley is the presence of teeth on the timing pulley. Timing pulleys have grooves or teeth on their circumferential surface that mesh with corresponding teeth on timing belts. This toothed profile enables positive engagement between the pulley and the belt, providing precise motion and preventing slippage. In contrast, standard pulleys typically have a smooth or V-shaped groove that allows for the use of flat belts or V-belts, which rely on friction for power transmission.

2. Synchronization and Timing:

Timing pulleys are specifically designed for applications that require accurate timing and synchronization. The teeth on the timing pulley mesh with the teeth on the timing belt, creating a positive drive system. This ensures that the rotational motion of the driving pulley is transferred precisely to the driven pulleys, maintaining synchronization and accurate timing. Standard pulleys, on the other hand, do not provide this level of precise timing and are commonly used in applications where synchronization is not critical.

3. Power Transmission:

A timing pulley is primarily used for power transmission in applications that require precise motion control. The positive engagement between the teeth of the timing pulley and the timing belt ensures efficient power transfer without slippage. This is particularly important in applications where accurate speed ratios and torque transmission are necessary. Standard pulleys, while also used for power transmission, rely on friction between the pulley and the belt for power transfer, which may result in some slippage under heavy loads or high speeds.

4. Customization and Configurations:

Timing pulleys offer a wide range of customization options to meet specific application requirements. They can be manufactured with different tooth profiles, pitch sizes, and numbers of teeth to achieve the desired speed ratios and torque transmission. Standard pulleys, on the other hand, have fewer customization options and are generally available in standard sizes and configurations.

5. Maintenance and Reliability:

Timing pulleys and timing belts require less maintenance compared to standard pulleys and belts. The toothed profile of timing pulleys prevents slippage, reducing the need for frequent tension adjustments. Additionally, the positive engagement between the timing pulley and the timing belt ensures reliable power transmission with minimal wear and elongation of the belt.

Overall, the main differences between a timing pulley and a standard pulley lie in their toothed profile, synchronization capabilities, precise timing, customization options, and maintenance requirements. Timing pulleys are specifically designed for applications that demand accurate motion control and synchronization, while standard pulleys are more commonly used where precise timing is not critical.

China Best Sales 20PE-Cm017-026 Alumiunium Timing Pulleys   alternator pulley	China Best Sales 20PE-Cm017-026 Alumiunium Timing Pulleys   alternator pulley
editor by CX

2023-12-22

As one of leading timing pulley manufacturers, suppliers and exporters of mechanical products, We offer timing pulley and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of timing pulley

Recent Posts